在许多多机构设置中,参与者可以组建团队以实现可能超过其个人能力的集体成果。衡量代理商的相对贡献并分配促进持续合作的奖励份额是艰巨的任务。合作游戏理论提供了识别分配方案(例如沙普利价值)的解决方案概念,这些概念公平地反映了个人对团队或核心表现的贡献,从而减少了代理人放弃团队的动机。此类方法的应用包括识别有影响力的特征并分享合资企业或团队成立的成本。不幸的是,即使在受限设置中,使用这些解决方案也需要解决计算障碍,因为它们很难计算。在这项工作中,我们展示了如何通过训练神经网络提出公平和稳定的回报分配来将合作游戏理论解决方案蒸馏成学习的模型。我们表明,我们的方法创建的模型可以推广到远离训练分布的游戏,并且可以预测比训练期间观察到的更多玩家的解决方案。我们框架的一个重要应用是可以解释的AI:我们的方法可用于加快在许多情况下的Shapley价值计算。
translated by 谷歌翻译
大规模神经网络的毫无疑问的神秘感,例如剪辑双图像和文本编码器,自动生成艺术。越来越复杂的发电机增强了艺术品的现实主义和视觉外观,并启用了创造性的工程表达。在艺术家理想的指导下,我们设计了一个基于梯度的发电机来生产拼贴。它要求人类艺术家策划图像贴片的库,并描述(提示)整个图像组成,并可以选择在世代相传中手动调整贴片的位置,从而使人类能够重新获得对流程的控制并实现更大的创意自由。我们探索高分辨率拼贴的美学潜力,并提供开源的Google Colab作为艺术工具。
translated by 谷歌翻译
现实世界中的数据是高维的:即使在压缩后,书籍,图像或音乐表演也很容易包含数十万个元素。但是,最常用的自回归模型,变压器非常昂贵,以缩放捕获这种远程结构所需的输入和层数。我们开发了感知者AR,这是一种自回归的模态 - 不合骨架构,它使用交叉注意力将远程输入映射到少数潜在的潜在,同时还可以维护端到端的因果关系掩盖。感知器AR可以直接进行十万个令牌,从而实现了实用的长篇小写密度估计,而无需手工制作的稀疏模式或记忆机制。当对图像或音乐进行培训时,感知器AR会生成具有清晰长期连贯性和结构的输出。我们的架构还获得了长期基准测试的最新可能性,包括64 x 64个Imagenet图像和PG-19书籍。
translated by 谷歌翻译
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.
translated by 谷歌翻译
Petrov-Galerkin formulations with optimal test functions allow for the stabilization of finite element simulations. In particular, given a discrete trial space, the optimal test space induces a numerical scheme delivering the best approximation in terms of a problem-dependent energy norm. This ideal approach has two shortcomings: first, we need to explicitly know the set of optimal test functions; and second, the optimal test functions may have large supports inducing expensive dense linear systems. Nevertheless, parametric families of PDEs are an example where it is worth investing some (offline) computational effort to obtain stabilized linear systems that can be solved efficiently, for a given set of parameters, in an online stage. Therefore, as a remedy for the first shortcoming, we explicitly compute (offline) a function mapping any PDE-parameter, to the matrix of coefficients of optimal test functions (in a basis expansion) associated with that PDE-parameter. Next, as a remedy for the second shortcoming, we use the low-rank approximation to hierarchically compress the (non-square) matrix of coefficients of optimal test functions. In order to accelerate this process, we train a neural network to learn a critical bottleneck of the compression algorithm (for a given set of PDE-parameters). When solving online the resulting (compressed) Petrov-Galerkin formulation, we employ a GMRES iterative solver with inexpensive matrix-vector multiplications thanks to the low-rank features of the compressed matrix. We perform experiments showing that the full online procedure as fast as the original (unstable) Galerkin approach. In other words, we get the stabilization with hierarchical matrices and neural networks practically for free. We illustrate our findings by means of 2D Eriksson-Johnson and Hemholtz model problems.
translated by 谷歌翻译
Information on the grass growth over a year is essential for some models simulating the use of this resource to feed animals on pasture or at barn with hay or grass silage. Unfortunately, this information is rarely available. The challenge is to reconstruct grass growth from two sources of information: usual daily climate data (rainfall, radiation, etc.) and cumulative growth over the year. We have to be able to capture the effect of seasonal climatic events which are known to distort the growth curve within the year. In this paper, we formulate this challenge as a problem of disaggregating the cumulative growth into a time series. To address this problem, our method applies time series forecasting using climate information and grass growth from previous time steps. Several alternatives of the method are proposed and compared experimentally using a database generated from a grassland process-based model. The results show that our method can accurately reconstruct the time series, independently of the use of the cumulative growth information.
translated by 谷歌翻译
The outbreak of the SARS-CoV-2 pandemic has put healthcare systems worldwide to their limits, resulting in increased waiting time for diagnosis and required medical assistance. With chest radiographs (CXR) being one of the most common COVID-19 diagnosis methods, many artificial intelligence tools for image-based COVID-19 detection have been developed, often trained on a small number of images from COVID-19-positive patients. Thus, the need for high-quality and well-annotated CXR image databases increased. This paper introduces POLCOVID dataset, containing chest X-ray (CXR) images of patients with COVID-19 or other-type pneumonia, and healthy individuals gathered from 15 Polish hospitals. The original radiographs are accompanied by the preprocessed images limited to the lung area and the corresponding lung masks obtained with the segmentation model. Moreover, the manually created lung masks are provided for a part of POLCOVID dataset and the other four publicly available CXR image collections. POLCOVID dataset can help in pneumonia or COVID-19 diagnosis, while the set of matched images and lung masks may serve for the development of lung segmentation solutions.
translated by 谷歌翻译
Continual learning with an increasing number of classes is a challenging task. The difficulty rises when each example is presented exactly once, which requires the model to learn online. Recent methods with classic parameter optimization procedures have been shown to struggle in such setups or have limitations like non-differentiable components or memory buffers. For this reason, we present the fully differentiable ensemble method that allows us to efficiently train an ensemble of neural networks in the end-to-end regime. The proposed technique achieves SOTA results without a memory buffer and clearly outperforms the reference methods. The conducted experiments have also shown a significant increase in the performance for small ensembles, which demonstrates the capability of obtaining relatively high classification accuracy with a reduced number of classifiers.
translated by 谷歌翻译
Although action recognition systems can achieve top performance when evaluated on in-distribution test points, they are vulnerable to unanticipated distribution shifts in test data. However, test-time adaptation of video action recognition models against common distribution shifts has so far not been demonstrated. We propose to address this problem with an approach tailored to spatio-temporal models that is capable of adaptation on a single video sample at a step. It consists in a feature distribution alignment technique that aligns online estimates of test set statistics towards the training statistics. We further enforce prediction consistency over temporally augmented views of the same test video sample. Evaluations on three benchmark action recognition datasets show that our proposed technique is architecture-agnostic and able to significantly boost the performance on both, the state of the art convolutional architecture TANet and the Video Swin Transformer. Our proposed method demonstrates a substantial performance gain over existing test-time adaptation approaches in both evaluations of a single distribution shift and the challenging case of random distribution shifts. Code will be available at \url{https://github.com/wlin-at/ViTTA}.
translated by 谷歌翻译
Hierarchical decomposition of control is unavoidable in large dynamical systems. In reinforcement learning (RL), it is usually solved with subgoals defined at higher policy levels and achieved at lower policy levels. Reaching these goals can take a substantial amount of time, during which it is not verified whether they are still worth pursuing. However, due to the randomness of the environment, these goals may become obsolete. In this paper, we address this gap in the state-of-the-art approaches and propose a method in which the validity of higher-level actions (thus lower-level goals) is constantly verified at the higher level. If the actions, i.e. lower level goals, become inadequate, they are replaced by more appropriate ones. This way we combine the advantages of hierarchical RL, which is fast training, and flat RL, which is immediate reactivity. We study our approach experimentally on seven benchmark environments.
translated by 谷歌翻译